
Configuration Pinocchio: The Lies Plainly Seen and the Quest to be a Real
Discipline

Andre P. Masella
Ontario Institute for Cancer Research

Abstract

The construction of configuration files has long been
considered outside of the domain of “programming”.
However, configuration files have a way of growing more
complex. There is a struggle between keeping a config-
uration terse, by having the system infer information au-
tomatically, and explicit, without having excessive dupli-
cation. Either the configuration file develops embedded
domain-specific programming languages or a text-based
macro language is put in front. I will identify and catego-
rize patterns in the evolution of these programming lan-
guages and describe what kinds of patterns are needed to
avoid them.

1 Introduction

There has been a shift in the kinds of configurations writ-
ten. Previously, a server would be purchased, configured
to perform some role, and largely left alone for its ser-
viceable life. In compute clusters, the pattern is very dif-
ferent. Virtual machines allow repeated creation and de-
ployment of machine configurations. Compounding this
problem, applications have sprawled into many tiers of
services. It was previously common for a single service
to be a single binary; now, it is likely to be several bina-
ries, running on different virtual machines, and the logic
of the program is also likely to be spread out into the
database and peripheral services. This poses a problem
for testing as it is often impractical for a developer to
replicate the production environment on their desktop.

Due to these factors, configuration of an application
has become much more complex. At the very least, con-
figuration of an application extends beyond the applica-
tion itself and must encompass all the peripheral services
and the cluster environment–to say nothing of the build,
test, and deployment logic. This started happening in the
late 1990s with the advent of multi-tier applications and
accelerated with the use of cloud-based virtual machines,

particularly Amazon Elastic Compute Cloud in 2006.
As the layers of indirectly coupled components have

increased, the complexity of configurations have in-
creased to match. As a central problem, the composabil-
ity of the configurations does not match the composabil-
ity of the servers they describe. Moreover, the configu-
rations of different servers operate in radically different
ways, each developing unique methods of propagating
default values and concisely expressing repetitive infor-
mation.

To build better configuration management software,
one must first understand the problem being solved. Con-
figuration seems simple enough: simply provide some
values to an application on start-up. Unfortunately, the
reality is more nuanced. Firstly, the number of methods
for informing an application of its configuration is larger
than expected. These include command line arguments,
configuration files, environment variables, and values in
a database. Secondly, those values can contain sim-
ple data types, paths, composite data types, macro lan-
guages, and even programs written in Turing-complete
languages that run inside the binary as part of its serv-
ing logic. A large number of these values also interact
with each other in non-trivial ways; a change in one pa-
rameter can affect the interpretation of another. Finally,
the output of the configuration is usually opaque to the
programmer since the true output of the program is hid-
den inside the server. That is, there is part of the server
that takes the configuration and interprets it, but there
is generally no way to view the interpreted result. This
interpretation depends on three conflated sources of in-
formation: the execution of the configuration (e.g., the
macro expansion), the defaults provided by the binary,
and the invisible interface of the binary (i.e., the param-
eters used by the server itself). It is concerning that the
defaults provided by the server are not necessarily static
themselves; they can be influenced by the server’s build
process.

Language-theoretic security researches have described

Table 1: Configurations analyzed.
Server Function
Apache Web server
Asterisk Telephony server
BIND DNS server
CUPS Printing server
Make Build system
NGINX Web server
Samba File sharing server

an exploitation path where any input data that can di-
rect the flow of a program has the potential to be a pro-
gram that exploits its host program. In this case, the
host program is abstracted as a very unusual virtual ma-
chine, called a weird machine.[9, 3] Configuration is in-
timately tied to this concept as the server is a weird ma-
chine for the configuration and the configuration and the
server taken together can be a weird machine for the
queries. That is, a configuration can define new exploits
in a server.

To determine the extent of the problem, a survey of
common servers will be conducted, the problems cate-
gorized, and potential solutions discussed.

2 Survey of Configurations

In order to draw patterns, I analyzed the configurations of
several common servers shown in Table 1. The goal is to
look for patterns of three types: how defaults are propa-
gated, how transformations are done on the configuration
itself (i.e., macro languages), and the kinds of program-
ming languages that are embedded in the configuration
to be used during serving (as distinct from macro lan-
guages which are only processed at configuration time).
One of the major concerns with these embedded pro-
gramming languages (EPL) is that they are underspec-
ified; the semantics of their behavior is not laid out as
cleanly as would be expected in a normal programming
language. They also may have incomplete separation
from the macro languages in the configuration itself.

2.1 Formats

At first glance, it would seem that that the complexity of
the configuration is related to the structure of the configu-
ration format. That is, there is a tacit assumption that INI
configurations are semantically simpler than JSON ones;
which is demonstrably false. Although the servers stud-
ied use their own formats, they share remarkably similar
structure.

Most of the servers use hierarchical key-value stores;
that is, something like an INI file, but the sections have

implicitly nesting. In fact, the Windows registry is a hi-
erarchical key-value store and can be serialized to INI.
Samba’s configuration format is exactly INI.[2] Asterisk
stores data in a modified INI file; it has an extra layer of
hierarchy by storing many separate files.[4] CUPS and
Apache HTTPd look different from INI files, but this is
only superficial. In both formats directives are effectively
keys and the sections are nested into a hierarchy.[5, 1]
Again, BIND and NGINX looks very different from INI
files, but describe semantically similar content.[7, 8] All
of these servers have an additional property: the or-
der of directives matters. They all have access control
lists (ACL) that can be specified by a collection of “al-
low” and “deny” directives, for which the order of the
directives matters. Most of the other directives are order
independent.

Make has the most different format. I wish to justify
the inclusion of Make as a configuration format at all.
Build configurations of all kinds tend to straddle the di-
vide between configuration format and script. For the
purposes of this discussion, a script has control over the
execution flow; in traditional programming languages,
the author of the program has control over the order in
which pieces of the program execute–this is true even
in functional programming where the language itself has
more control of the real behavior of the program. In a
configuration, this is not the case. Make provides an
example of this: it is not possible to create a circular
dependency in Make as the Make interpreter can detect
and block it. A Makefile is really a declaration of a de-
sired scheduling behavior of rule bodies that the Make
interpreter executes. Make does have key-value pairs for
variables, but the main focus of a Makefile is the build
rules. A rule could be considered a key-value pair, with
the body as the value and the sources and targets as the
key, but the algorithm by which Make examines the com-
posite keys would make that an inaccurate analogy. The
rules are clearly separate configuration entities.

Both Make and Apache HTTPd also have macro rules
embedded in the configuration.

Despite the simplicity of these configuration files, As-
terisk, Apache HTTPd, BIND, and NGINX all describe
Turing-complete EPLs.

2.2 Default Propagation

In any binary, the configuration elements must eventually
be rendered to data structures or object graphs that direct
the behavior of the running program. When describing
these elements in the configuration, some information is
elided. For example, each CUPS printer has a maximum
page limit, struct cupsd_printer_s.page_limit,
but the matching configuration directive, PageLimit, is
not required. Therefore, CUPS must impute the elided

2

value by some method. This is what is meant by default
propagation.

Default propagation has two modes: implicit, where
the binary has rules that control how defaults are propa-
gated, or explicit, where the programmer specifies how
defaults are propagated. The ultimate value for a de-
fault must be present in the binary itself. Sometimes, that
choice could be determined at compile time. In commod-
ity software, this is a potentially unpleasant surprise for
a user, since two identical configurations could produce
differing behavior in two identical versions of the soft-
ware depending on the options selected by the packager
at build time.

Make has a very complex set of defaults, but ones
that are extremely visible. Every copy of Make con-
tains a default rule set that is compiled into the binary. A
command-line flag can cause make to display this default
configuration. GNU Make has some additional quirks: it
will check for multiple Makefiles of differing names and
capitalizations. If multiple files are found, it will use a
composite of them.[6]

CUPS and Samba have the simplest model. For CUPS,
the configuration parameters for a printer can be inher-
ited from a printer class or, if not present, assume a de-
fault from the binary.[5] Here, the propagation mode is
explicit because the user chooses a printer class for a
printer. Printer classes cannot be nested, so the propa-
gation is at most two steps. For Samba, the configuration
parameters are inherited from the global section, or, if
not present, assume a default from the binary.[2] Here,
the propagation model is implicit, since the user cannot
specify from where defaults are copied.

Asterisk has a more complicated model that is both
explicit and implicit. Stanzas may be inherited by other
stanzas and used to supply defaults. For instance, to have
stanza x inherit from y, the first line of the stanza would
be [x](y). Some stanzas can be declared as templates;
to be ignored in the configuration itself and only to serve
as a default for other stanzas. To create such a stanza x,
the first line would be [x](!). Unfortunately, this is not
the end of the algorithm. Some keys can also be inher-
ited from the general stanza in a configuration. Not all
attributes support inheritance; the binary defines which
ones do.

Apache has an implicit model based on the structure
of the nesting of configuration elements. Not all con-
figurations elements may be nested in one another, but
ones which can implicitly take the same values as their
containers unless overridden. There is some relation-
ship between the URL-space generated by the config-
uration. Options directives control the behaviour of
specific parts of the URL space and are configured by
Directory, Location, and Files stanza in the con-
figuration file and .htaccess files in the directories be-

ing served.[1] NGINX has a similar, though simplified,
model.[8]

BIND has a very complex model. It is worth noting
that BIND has two configuration formats: one for the
server itself and one for the DNS zones it is serving. In
the zone format, which is much simpler, there is only one
default, the TTL for a record, which is either specified for
a record, or inherited from the $TTL directive, which is
required. For the server configuration, the default propa-
gation algorithm depends on the directive. For instance,
both the dialup and notify options can be specified
in the individual zones or the common options stanza.
The dialup directive in the common stanza overrides
the option set in the zone stanzas, while the reverse is
true for notify; the common notify value is inherited
by the zones unless they override it.[7]

2.3 Macro Languages and Embedded Pro-
gramming Languages

I define a macro language to be a programming language
that is embedded in the configuration and completes ex-
ecution before a server beings processing user data. This
is distinct from an EPL, which executes during process-
ing of user data. A schematic example is shown in Fig-
ure 1. This distinction is necessary but not necessarily
obvious when inspecting the languages in configuration
files. The distinction is useful because it determines the
possible forms the implementation might take, and the
level of coupling with the rest of the server. The macros
in a configuration can be run to completion on a config-
uration independently of starting a server, and the lan-
guage interacts with the server unidirectionally and “by
value”. This is not the case for an EPL, which can be
affected by or have direct access to user input during
processing, making its interface to the server necessarily
bidirectional. Some EPLs may also mutate the server’s
internal state, or themselves possess long-lived mutable
state.1

The number of macro languages is surprisingly small
as many of the things that appear to be macros are, in
fact, EPLs. BIND posses a macro system in zone files.
There are a number of preprocessing directives, includ-
ing $TTL and $ORIGIN, which are meant to provide de-
faults for the remainder of the configuration. There is
also the $GENERATE macro that allows construction of
large blocks of similar resource records. The names of
resource records are passed through a transformation to
ensure they are suffixed with the correct domain and @

is replaced with the current domain. All of these trans-
formations can be done statically before BIND starts and
produce a new zone file that is semantically equivalent to
the original. BIND’s configuration files have no macros
of any kind.

3

Figure 1: A schematic showing the difference between
a macro language and an embedded programming lan-
guage. The diagram shows an example query flow
through a system. The blue components are defined in
the configuration, while the white components are from
the binary. The database configuration defines multiple
configurations of a database, but this does not control the
query flow in a non-deterministic way. The logic below,
also defined in the configuration, does introduce query-
dependent logic, making this an embedded programming
language.

Queries

Embedded Language

Macro

Binary

Configuration

Figure 2: An accidental Apache infinite rewrite loop
from Stack Overflow (http://stackoverflow.com/
questions/2635611).

RewriteRule ^about/$ about.htm [L]
RewriteRule ^about\.htm$ about/ [R=302]

There are EPLs in Asterisk, Apache, BIND configura-
tion file, Make, and NGINX. CUPS is the sole example
studied that has no macro system or EPL.2 Samba strad-
dles this line as it does not have an embedded program-
ming language, but it can call shell commands and create
files using a well-defined string substitution mechanism.

NGINX has the simplest EPL used to perform URL
rewriting. Each rewriting block can invoke the instruc-
tion last, which causes the URL rewriting to start again
based on modified URL. This instruction is a jump in-
struction. Coupled with the conditions provided by
other rules, NGINX’s rewriting system is now a Turing-
complete programming language that is executed for
every incoming query. Since an unprivileged user of
NGINX now has the opportunity to control the behav-
ior of URL rewriting programs NGINX is executing, this
qualifies as a weird machine.

BIND also has a query rewriting system know as a
response policy. This systems is much more restricted
and not Turing complete.

Apache’s mod_rewrite has similar behavior to
NGINX and can also be used in the same way. The regu-
lar expression matching can use back-references and the
scope of a back-reference of a condition includes the sub-
sequent rewrite rule. Apache’s EPL is much more per-
vasive than this. Firstly, the URL remapping system ex-
tends beyond mod_rewrite and includes mod_actions,
mod_dir, mod_imagemap, and mod_negotiation.
Secondly, there is also the mod_envsetif system which
allows examining the query to set binary flags that
can alter the meaning of any part of the configuration.
Apache’s entire configuration is thereby transformed into
one large weird machine, controllable through every
query entering the system.3 For example, Figure 2 shows
a configuration from a Stack Overflow post where a user
has unintentionally created an infinite loop.

Make’s EPL is the most sophisticated and the most dif-
ficult to understand. Make supports eager and lazy evalu-
ation during assignments, referred to as “immediate” and
“deferred”. Make’s EPL also interacts with rule defini-
tions which are a somewhat separate stage. To correctly
analyse a Makefile, it is best to think of it in three stages.
In the first stage, all instructions that do not contain one
of Make special rule variables can be evaluated; these are
$<, $@, $^, $%, $?, $|, and $+. Then rule targets and pre-
requisites can undergo wildcard (%) substitution. Finally,

4

http://stackoverflow.com/questions/2635611
http://stackoverflow.com/questions/2635611

Figure 3: An example Asterisk dial-plan for handling
four-digit extensions.

exten => _ZXXX,1,Dial(SIP/${EXTEN}, 60)
exten => _ZXXX,n,Goto(in-${DIALSTATUS},1)
exten => _ZXXX,n,Hangup

exten => in-BUSY,1,Voicemail(210@default,u)
exten => in-BUSY,n,Hangup(17)
exten => in-CONGESTION,1,Hangup(3)
exten => in-CHANUNAVAIL,1,Voicemail(210@default,u)
exten => in-CHANUNAVAIL,n,Hangup(18)
exten => in-NOANSWER,1,Voicemail(210@default,u)
exten => in-NOANSWER,n,Hangup(16)
exten => _in-.,1,Hangup(16)

the bodies of the rules, which may contain the special
rule variables, can be expanded.

Asterisk’s EPL is called the dial-plan, found in
extensions.conf, and it describes the logic that de-
fines how a telephone call is routed based on the number
dialed and source of the call. Since the Goto instruc-
tion performs variable expansion, to handle the status of
a call attempt, the special variable ${DIALSTATUS} is
inserted into the Goto instruction so that the desired la-
belled block can be reached. Figure 3 shows a simple
pattern to handle four-digit extensions.

This embedded language has become quite compli-
cated, and some Asterisk developers have created a mod-
ule that allows it to be replaced with the general-purpose
embedded scripting language Lua.

3 Common Problems

All of the configurations surveyed share behavior that is
undesirable to their users. As the maintainer of a sys-
tem, one’s desires are: ease of writing and adjustment of
that configuration, ease of debugging, robustness of the
configured software.

3.1 Terse versus Explicit – The Macro and
Defaults Problem

As the person responsible for initial configuration of a
program, there is a strong desire for the configuration to
be as terse as possible. However, for the person debug-
ging the configuration, it is desirable for the configura-
tion to be as explicit as possible. Ultimately, these two
goals are in direct opposition.

Both macro systems (and EPLs) and default propaga-
tion are attempting to solve the same problem: making
the configuration more terse. Default propagation is a
way of providing values the user does not know how to
set, but this is equivalent to copying values out of the
manual, making it only a means to achieve terseness.

In the final in-memory representation of the configura-
tion objects, many of the configuration values will be
duplicated. Recall the example of CUPS’s page limit,
which is set for each printer known to the server. De-
fault propagation can be seen a kind of macro system:
it is a rewriting of the configuration before any user in-
put is handled. In theory, one could separate the default
propagation into a separate step. Some binaries, includ-
ing CUPS and Samba provide options to “pretty print”
their configurations, but what they are doing is providing
a version where all the defaults have been propagated.
This elaborated configuration file is now as explicit as
possible, but much less terse.

BIND’s $GENERATE directive is clearly a way to avoid
writing very repetitive resource records into the zone file.
This is important from a human perspective: a block of
very repetitive records is likely to accumulate unnoticed
errors. The terse form is more semantically relevant to a
human than the explicit form, though the fully expanded
form can be clearer.

The explicit form has two major advantages: it is sta-
ble and it comparable. If a default is changed in the bi-
nary, then it will be invisibly changed during upgrade if
the configuration is terse. If the configuration is explicit,
then all values have been stated in every required place,
so the changed default is easily detectable. This makes
the configuration more robust to upgrades. When the
time for change has come, it also allows direct compari-
son of all the values. It will provide a clear and complete,
though tedious, comparison of the changes made. If
the configuration contains embedded programming lan-
guages, these cannot be compared, even if it is explicit,
since comparing programs in Turing-complete languages
is undecidable.

3.2 The Common Bridge Problem

Often, a configuration must represent disparate objects
in a uniform way. The simplest example comes from the
fstab, where each entry for a mount point contains a
device, a target path, a file system type, some options,
and fsck ordering.[11] Initially, this was fine, but it has
become increasingly mismatched. For network file sys-
tems, the fsck ordering is completely ignored and the
“device” is really a network identifier. As file systems
become increasingly exotic (e.g., FUSE, loopback, or
distributed file systems), the lack of extensibility in the
fstab becomes increasingly apparent. Ultimately, the
real pattern is that there is one driver for each file sys-
tem, part of which lives in the kernel and part of which
lives in the mount program. The fstab is part of a com-
munication channel between the two.

This pattern repeats itself many times. There are so-
lutions that have been adopted. URIs are a simple ab-

5

straction over a very complicated configuration problem.
CUPS uses URIs to identify printer backends. The ab-
straction is good because it allows CUPS to find the right
backend and define a backend interface with the neces-
sary complexity but forces the backend to solve the rep-
resentation of its configuration space independently.

LDAP has also solved this problem by defining a uni-
form way to represent and query different kinds of data.
The application has a well-defined interface to the LDAP
server, but the user can provide a sophisticated request to
the LDAP server that is proxied, but not understood, by
the application.

3.3 Composition

In the traditional model where a service is set up on a
machine once and left to run, composition seems like a
pointless endeavor: what is there to compose? In the
cluster model, composition is suddenly more important.
There is a linked configuration between the server and
the container and the servers in different containers need
to contact each other in order for the tiers in an appli-
cation stack is communicate. The configuration of the
cluster system and the applications is now mutually de-
pendent.

However, composition has always been important.
Composition can be difficult to see because, when it is
present, it fades into the background. Escaping is one of
the most obvious and pervasive symptoms of poor com-
position. A user should not have to know the number of
layers data will pass through to escape input data prop-
erly.

For good composition, LDAP is a worth-while exam-
ple. LDAP has three key features that provide excel-
lent composability: the interface with the program is
well-defined, the interface with the user is well-defined,
and the marshalling between the two is well-defined.
The LDAP interface from the binary is straight forward:
open a connection, send a query, get back a list of self-
describing dictionaries. Similarly, the LDAP interface
for the user is straight forward: provide a URI for a con-
nection, provide a query, list the fields of interest to ac-
cess from the results. The query passed is simply a string
and, unlike SQL, it is a sufficiently well-behaved entity
that the client can send its request to the server with a
minimum of string bashing and rewriting.

For bad composition, any build tool will provide ex-
amples. The typical C compiler and tool-chain is a suf-
ficiently obtuse build system that it needs Make to man-
age compilation of all but the simplest programs. Be-
cause of the division of header files and libraries, com-
pile and link flags must be passed around separately. Al-
though pkg-config has become the canonical source
for flags, many libraries do not provide pkg-config def-

initions, so each program’s build system must go through
a platform-dependent set of steps to discover the cor-
rect flags to use a particular library. Determining the
per-file build dependencies is also a non-trivial exercise
and necessary to give Make the correct information to
allow fast and accurate rebuilding of changed files. This
lead to the development of tools like GNU AutoTools and
CMake. In GNU AutoTools, the relay race is as follows:
write a configuration script in two different languages
(AutoMake and AutoConf’s M4), which get translated
to Make and a shell script, respectively; run the shell
script so that it can detect the state of the build system
and rewrite the Make file; then run the Makefile to in-
voke a shell to invoke the compiler with the correct flags.
This is grossly simplified and ignores some of the other
features of the programs involved. That being said, it is
still exceedingly complicated and involves many layers
of fragile escaping.

Demand for composition only increases as layers of
automation increase.

3.4 Weird Machines

A weird machine is program whose input handling mech-
anism allows the input to use the program as an ex-
ploitable interface for running arbitrary code in a Turing-
complete language. Imagine if a properly crafted fstab

could turn mount into a virtual machine. Weird machines
occur either by design or through bugs in input handling,
often due to ill-designed attempts to parse or validate
input[3]. Configurations are even more confusing be-
cause they offer the opportunity to create nested weird
machines.

In most programming languages, the compiler is not
a weird machine. That is, for any input file, it will read
any input (source code) and produce output (object code
or errors) in a deterministic way, and it will halt for all
inputs. C++’s template are a Turing complete language,
so it is fair to consider the C++ compiler as a weird ma-
chine. The process of expanding templates by the C++
compiler is itself the interpretation of a program written
in a Turing-complete language: in particular, it is impos-
sible to know whether the compilation of a given pro-
gram will even halt. Having programs which may not
halt would be entirely undesirable.

Any program might be a weird machine. For instance,
imagine an application server that receives RPCs. Even
if the behavior of the RPC is well defined, there’s a pos-
sibility for a bug in the unmarshaling code that would
allow an attacker to exploit the binary. In this example,
the parser-validator of the RPC layer could be a weird
machine.

In complicated configurations, there is the possibility
for two levels of weird machines. At the first level, the

6

configuration parser-validator could be a weird machine
controlled by the configuration data. The second level is
created whenever EPLs in the configuration allow one to
define a weird machine which is controlled by incoming
requests. The first is less troublesome since anyone ca-
pable of creating a configuration is already trusted, but
the second is extremely worrying.

Apache and NGINX’s rewrite rules provide an exam-
ple of this. The rewrite rules in these servers are Turing
complete, and can be thought of as defining a bytecode
that runs atop a virtual machine in Apache or NGINX.
“Programs” written in this rewrite-rule bytecode them-
selves define a virtual machine, atop which every HTTP
request is executed. If the virtual machine so defined
has a Turing complete bytecode (encoded as HTTP re-
quests) then a nested weird machine is formed that is re-
motely exploitable. Supposing that Apache or NGINX’s
rule rewriting engines are infallible, it is possible to write
two different configurations: one which will allow a re-
mote attacker to exploit the rewriting and one which will
not. That difference exists because of the configuration.

Although embedded programming languages exist in
the configuration, they are run-time entities that effec-
tively define new servers. Stated another way: there is
no material difference between creating rewrite rules in
Apache’s configuration versus writing them as C code a
linking them into Apache.

Embedded programming languages are badly under-
specified. They do not generally define formal seman-
tics, describe a machine state, or explain all their side-
effects. Even in Apache’s documentation, there are sim-
ple gaps. For instance, a RewriteRule may access back-
references from its regular expression match, but the be-
havior for accessing an undefined back-reference is not
specified.

4 Recommendations

It is possible to make configurations more manageable. I
recommend the following:

• separate the macro systems so that all macro pro-
cessing is a separate step that happens before run-
ning the server.

• remove the weird machines by recognizing EPLs
and replacing them with existing programming lan-
guages, treating them with the rigor of traditional
programming languages, or demoting them to byte-
codes, ideally non-Turing-complete ones, while
delegating the high-level programming to the macro
system.

• recognize the common bridge problem and solve it
using established techniques.

• configurations that act as intermediates (e.g.,
Docker), should always support raw strings. When
embedding one configuration in another, escaping
becomes difficult to do correctly and even more dif-
ficult for a human to read. It would be ideal if the
configuration could read a user-specified number of
bytes from the input with no escaping or translation
of any kind.

For clarification, I am discouraging the use of Turing-
complete languages at run-time (i.e., on the path taken by
queries) while encouraging the use of Turing-complete
languages before start-up. The power of using a Turning-
complete language is ideal for writing more terse, intelli-
gent configurations, but allowing user-defined programs
in Turing-complete languages to run during execution is
risky, and often unnecessary.

4.1 The Macro Solution
Expansion of terse configurations into elaborate ones is a
useful and desirable goal. The same arguments for hav-
ing general-purpose languages that compile to machine
code apply to having terse configurations that expand to
general ones. Most of the languages used to expand con-
figurations are text-based macro systems, yet text-based
macro systems have been abandoned as a compiler for
general-purpose languages in favor of compilers capable
of analysis and verification of the program being com-
piled. One should have the same expectation of configu-
rations. I propose using the term configuration language
to describe a general-purpose language intended for cre-
ating configurations, as opposed to the executable code
generated by general-purpose programming languages.

By creating a separate configuration language that pro-
cesses a terse configuration file and generates an explicit
one, there are several immediate benefits:

• the explicit configuration can be compared when
changes are made. That is, it is diffable.

• default propagation can be made uniform, since it
is implied by a standard language, rather than each
binary.

• input handling in the application becomes simpler:

– defaults can be moved entirely out of the bi-
nary.

– the structure of the configuration can closely
resemble the data structures in the binary.

– the data is more likely to be representable as
JSON, YAML, INI, or another standard format
for which robust parsers already exist.

7

• libraries can be built for the configuration allowing
code reuse.

• upgrading can be separated into two stages: upgrad-
ing the binary that reads a configuration file and up-
grading the configuration language library that con-
tains the defaults. For example, suppose there was
a policy change for a default. Normally, upgrading
the binary would change to the new default. If the
configuration templates are independent, the config-
uration changes could be upgraded, then the new
default run with the old binary, then the binary up-
graded. Effectively, it becomes possible to backport
configuration policy changes to old binaries.

• a small number of popular configuration languages
can develop tool and debugger support, whereas this
is impractical if each binary has a unique configura-
tion format.

• configurations can be composed because the same
language is used for the various binaries being com-
posed.

4.1.1 The Failings of Traditional Programming
Languages

There is an obvious question to be answered: what is
the benefit of creating a new class of programming lan-
guages to solve this problem? Why not use existing lan-
guages that bring with them tools, libraries, and experi-
ence? The glib answer is that: if any traditional program-
ming languages were good at being configurations, they
would have achieved some wide-spread adoption for that
purpose.

For the sake of argument, programming languages can
be separated into two groups: functional and procedu-
ral. The difficult parts of configuration files are default
propagation and composition.

Functional languages are very good at composition of
data, but have no easy mechanism for default propaga-
tion. In most functional languages, all data needs to be
passed explicitly as a parameter. This is cumbersome for
configurations. It is possible to use function composition
to achieve some of this, but it requires considerable rigid-
ity in the format of the data, which is at odds with con-
figurations where most values are defaults most of the
time. This is partly because most functional languages
use algebraic data types and the receiver must know the
entire structure of a type to use it; it is not possible in
most functional languages to create an updated version
of a type with new fields and use it with existing code
even if these new fields are unneeded or can be safely
ignored by existing code.

Procedural languages, especially object-oriented ones,
are good at composition of program flow and data. De-
fault propagation is better: objects and initializers can
propagate defaults. However, explicit control of data
flow becomes cumbersome as the values propagated be-
come sensitive to the order of execution since they can
be mutated after propagation. One advantage to object-
oriented procedural languages is that the receiver of an
object can ignore new or uninteresting features of an ob-
ject, unlike algebraic data types.

Both groups of languages have a heavy focus on data
flow. The order of execution, or implied lack of execu-
tion, is a prominent feature in both groups. Functional
languages often proclaim the order of execution is unim-
portant, but this is not strictly true when considering er-
ror handling. In most functional languages, a program
stops at the first error discovered. For configurations,
the order of execution is not important and it is reason-
able to continue executing to discover more errors. Most
functional languages still imply some linear order of ex-
ecution, even if the compiler has control over that order,
whereas configuration languages do not require this be-
havior. The configuration, in general, can be treated in
parallel, and only certain operations will cause junctions
in execution flow.

Input-output is also a focus of traditional languages
and not of interest in configuration languages. Config-
uration languages will always be run in the same man-
ner: take some collection of input files and produce an
output configuration. There’s no desire to have a long-
running configuration language. Writing the next gen-
eration of servers is not a goal for a configuration lan-
guage, so stateful file and network access is not needed.
There will need to be some method to import sources of
data, but this is a much more restricted case of the gen-
eral input-output required in general-purpose program-
ming languages.

A useful configuration language will inherit some of
the behavior of functional and procedural languages, but,
perhaps a more insightful focus, it can jettison large
amount of unnecessary behavior from general-purpose
programming languages.

4.1.2 Current Configuration Languages

Presently, there are a handful of configuration languages
that attempt to solve some of the above problems.
They provide uniform default propagation models and
reusable ways to write terse configurations that become
more elaborate. These languages are in their infancy, so
this survey only attempts to draw attention to their promi-
nent features. A summary of features is shown in Table 2.

8

Table 2: Comparison of configuration languages
Coil Flabbergast HOCON Jsonnet NixOS Pan Pystachio

Paradigm Functional Functional Imperative∗ Functional Functional Imperative Imperative
Side-effect Free Yes Yes No Yes Yes No Hybrid∗

Inheritance Prototype Prototype Prototype Prototype None Class-based Class-based
Typing Strength Weak Strong Weak Strong Strong Strong Strong
Typing Enforcement Dynamic Dynamic Dynamic Dynamic Dynamic Hybrid∗ Dynamic
Schema Validation None None None None None Assignment Request
Turing Complete No Yes No Yes Yes Yes No
Scoping Lexical Dynamic Lexical Lexical Lexical Lexical Hybrid∗
Default Propagation Inheritance Scope, inheritance Inheritance Inheritance Operator Inheritance Inheritance
Output Format Python objects Text, Custom Java, Python, or Ruby objects JSON Java objects JSON, XML Python objects

∗ Depends on context. See description for details.

Coil: Coil defines a key-value hierarchy. Any object
can inherit another object by way of an absolute or rela-
tive path. The inherited values, or values of child objects,
can be overridden. Values can be strings with substitu-
tions, integers, or lists with substitutions. String substi-
tution allows templating using values defined in the hier-
archy. Coil also has a @map operator to generate similar
objects.
https://code.google.com/p/coil/

Flabbergast: Flabbergast constructs a key-value hier-
archy similar to JSON. Each value is an expression that
can reference the values of other keys using an unusual
dynamic scoping method. Flabbergast allows prototype
inheritance through “templates”, which also function as
lambdas with multiple return values. There are also map
and reduce operations to manipulate objects. Flabbergast
does not imply a particular output format; it allows the
program to construct an arbitrary string which it writes
to a file as output.
The author of this paper is the developer of Flabbergast.
https://github.com/apmasell/flabbergast

HOCON: Human-Optimized Config Object Nota-
tion (HOCON) is a superset of JSON that includes string
substitution, prototype inheritance, and concatenation.
HOCON allows strings and arrays to be concatenated
using previously defined variables. The prototype inher-
itance is semantically similar to concatenation: an ex-
isting object is used, but the operation behaves as a re-
placement rather than an append. HOCON appears to
have imperative semantics, but the language is analyz-
ing the references between definitions and redefinitions,
so that certain definitions are considered self-referential
and illegal. The configuration is meant to be consumed
by an application directly. The original version targeted
the Java Virutal Machine, including Java, Scala, and Clo-
jure, and it has been ported to Python and Ruby.
https://github.com/typesafehub/config

Jsonnet: Jsonnet looks very similar to JSON, but rein-
troduces some JavaScript-like features. Each value is an

expression that can reference other values specifying a
path of key names from the root of the tree to the desired
value. Any object in the tree can be used as a prototype
for another object. The standard library provides map
and reduce operations to manipulate lists.
http://google.github.io/jsonnet/doc/

NixOS: NixOS constructs a key-value hierarchy. Each
value is an expression that can reference the values of
other keys referencing other values using a path of key
names. The resolution starts in the current collection,
or one of the capturing constructs, such as lambda or
let, and checks through the nested constructs until it
reaches the root. While NixOS does not have an inheri-
tance mechanism, it does have a set of default propaga-
tion operator: the or operator is a null coalescence for
a value, and the // operator is a null coalescence for all
the values of a pair of collections.
http://nixos.org/

Pan: Pan defines classes for objects where fields can
have very specific types, including range types and string
matching expressions. Instances of types can be instan-
tiated and mutated through a series of imperative opera-
tions. There is an output tuple-space containing the target
configuration. Local variables created in the imperative
language are in a separate name-space from the keys in
the object hierarchy being constructed. The tuple space
can be read from or written to using paths of key names;
paths may be relative or absolute.
http://www.quattor.org/

Pystachio: Pystachio is a configuration data model and
string template system built on top of Python. Any im-
perative features come from Python itself, rather than
the Pystachio data model. Structs define classes for
data object and the required types. Instantiated objects
be associated with environments, that provide values for
templates defined in Structs. Once all the templates
variables are resolved, the resulting value can be type
checked and used.
https://github.com/wickman/pystachio

9

https://code.google.com/p/coil/
https://github.com/apmasell/flabbergast
https://github.com/typesafehub/config
http://google.github.io/jsonnet/doc/
http://nixos.org/
http://www.quattor.org/
https://github.com/wickman/pystachio

4.2 Abstraction of the Common Bridge
The common bridge problem has been solved in many
instances. Ultimately, solving the common bridge prob-
lem comes down to being appropriately agnostic of the
data being handled.

In the fstab example, there are functions in the kernel
capable of creating a mount point and user space needs
a way to call those functions. That is essentially a re-
mote procedure call, except the remote procedure is in
kernel space rather than a remote system and the bridge
is a system call rather than a TCP socket. The code in
the user space must take a complex data representation,
serialize it, and send it over the channel, where it must
be deserialized and processed.

While any serialization method is fine, one which is
human readable is more convenient. The format needs to
be standard enough that the remote function is easily ex-
tracted. URIs excel at this for many applications. Again,
looking to CUPS, each URI’s scheme indicates to which
backend (i.e., function) CUPS should send the data. The
remainder of the URI is entirely in the hands of the back-
end, and outside CUPS’s boundary of competence. URIs
also have well-defined format, parsing, and escaping se-
mantics.

4.3 Composition
Providing good composition has already been partially
address through configuration languages and the com-
mon bridge problem. Composition works well when:

• the interfaces between layers are well-defined.

• proxying is simple and does not involve fragile op-
erations (this requires that the interface is well-
defined so the intervening layer can know how to
proxy).

• adding intervening layers does not change the prox-
ying behaviour. It should be the case that if data
needs to be proxied, the same proxying semantics
should work irrespective of the number of layers.
Escaping is an example of a failure here: a user
should not have to know the number of layers data
will pass through to escape input data properly.

The common bridge problem occurs when the in-
terfaces between layers are defined incorrectly and the
proxying is fragile. Configuration languages need to be
good proxies and allow users to define interfaces be-
tween layers.

Escaping is one of the most obvious and pervasive
symptoms of poor composition. The examples are ev-
erywhere: OpenSSH’s scp does not escape certain file
names properly, the escaping rules for strings in shell

are extremely complicated and context dependent (e.g.,
escaping for command line arguments is different from
here-doc), and the great complexity of HTML escaping.

It would be ideal if all composing layers could handle
proxying of strings with a length; such a model would
allow a configuration language, which knows the length
of a string, to pass it to a subsequent layer without the
need to escape it. Specifying string lengths is a tedious
prospect for humans, but trivial for software–much more
than requiring the programmer to understand the nuances
of escaping at every level. Modifying length-specified
strings is non-trivial for human programmers, but so is
modifying heavily escaped strings and modifying heav-
ily escape strings is much harder to debug.

To some degree, creating well-defined interfaces will
always be the domain of programmers, but configuration
languages can provide better support to specify and com-
municate those interfaces. In the long term, configura-
tion languages will have to develop both in-language fea-
tures and conventions and styles for defining interfaces
between layers.

4.4 Embedded Languages
Embedded programming languages are a bottomless well
of concerns for security. As a general guide, these ques-
tions need to be answered, ordered from most desirable
to least desirable:

1. Can this be replaced with something entirely static?
(e.g., a look-up table) Even if this table requires a
program to generate it, it is better that it be done
before the application runs.

2. Can this be replaced by a language which is not
Turing-complete? (e.g., a formula, or regular ex-
pression)

3. Can this be replaced by an existing scripting lan-
guage?

Language-theoretic security researchers recommend
stripping out Turing-completeness where possible to
avoid creating weird machines. If it can be replace with
something static, this is the best, and most trivial solu-
tion. I will elaborate on solutions in the other cases.

The first step should be to identify whether Turning
completeness is required at all. It is recommended to try
to reduce the problem to a regular language or determin-
istic context-free language. If this is possible, then the
problem is a great deal simpler. If it is impossible, then
the programming language should be considered care-
fully as if designing a general-purpose programming lan-
guage. There are many obscure programming languages
that few people know; when you create a new program-
ming language, you can be guaranteed that no one will

10

know it.[10] If an embedded programming language is
needed, why not use Guile, Lua, FORTH, GameMonkey
script, AngelScript, TCL, Squirrel, or JavaScript? Any of
these or similar languages has an easily-embedded run-
time that allows plugging-in foreign functions to inter-
face with the host program. All the issues of language
design, validation, verification, type checking, the object
model, documentation, optimization, and future develop-
ment are externalized to a community of people focused
on doing that well.

If using an existing language is impractical or pro-
vides too much power (i.e., the program can be restricted
to a non-Turing-complete language), a lot of thought
should be put into the design of the language. Language-
theoretic research has outline common pitfalls in input
handling that create unintentional weird machine.[3] If
there needs to be an input program, Turing complete or
not, I recommend the following: minimize the language
and plan the machine design to take advantage of exist-
ing knowledge in language and VM design. Minimizing
the surface of the language also minimizes the potential
for a weird machine. As a first step, define the machine
on which the language operates. Is the machine going to
have named registers (i.e., variables) or be a stack ma-
chine? A stack machine is simpler to implement and
simpler to write a verifier. What will the language look
like? If the language looks more like assembly language
or like a stack language (e.g., PostScript or FORTH), the
parser will be simpler to implement. What types are
needed in the language? Obviously, fewer is better, as
is avoiding mutable state. Next, define all the operations
in the language and specify how they alter the machine
state. Now, it is possible to implement this machine. As
per standard practice, parsing the language and verifying
it should be separate steps. Writing an efficient inter-
preter is something that should be avoided. If running
on a virtual machine, such as the JVM or CLR, there
are libraries that allow dynamic compilation and loading
of bytecode; this dynamically generated bytecode can be
optimised and in-lined by the JIT. If running on the na-
tive machine, LLVM provides a framework to compile
and JIT and retrieve a function pointer to a dynamically
compiled function.

This approach provides many secondary advantages.
Suppose a runtime error is detected in the program; sim-
ply crash the virtual machine, dump the machine state
to a log, and fail the incoming query. This output will
be more than sufficient to correct the program and more
comprehensible than an opaque stack trace of the in-
terpreter. It is also possible to separate the compiler
for this language from the binary and provide a simu-
lator so that the programmer can debug their program
using test queries, ideally ones that can be logged by the
server. Also, by separating the implementation of each

byte code, the entire language is now easily unit tested.
There is an argument to the utility of having Turing-

complete languages on the serving path. However, it
seems to be source of confusion. Apache in particu-
lar has made an effort to prevent this by providing a
LimitInternalRedirects option which the manual
states:

LimitInternalRecursion prevents the
server from crashing when entering an infinite
loop of internal redirects or subrequests. Such
loops are usually caused by misconfigurations.

Clearly, the authors of Apache consider the ability to per-
form Turing-complete redirection to be a misfeature as
they cap the number of redirects at ten, by default.

Using either a custom language or an existing one, it
is important to extricate the embedded programming lan-
guage from the macro system in the configuration lan-
guage. The more intertwined these two entities are, the
harder each of them is to reason about. Using an ex-
isting language is a good way to avoid this problem: it
becomes impractical to modify since the language is an
externally-defined entity.

4.5 Conclusions
Configuration files are far more complicated than they
first appear. Many configuration files define embedded
programming languages that can alter the execution flow
in a binary in Turing-complete, potentially exploitable
ways. There are a variety of default propagation schemes
used by different binaries. Currently, configurations are
not easily composable. There is value in tools that pro-
vide a standard default propagation scheme and provide
some level of composition. Some tools are being devel-
oped to fill this niche, but they are still fairly immature.

5 Acknowledgments

Thanks to Kyle W. Schaffrick for editing and assisting in
classifying the patterns. Thanks to Dr. Gráinne Sheerin,
Dr. Daniel G. Brown, and James L. Schofield for editing.

References
[1] THE APACHE SOFTWARE FOUNDATION. Apache HTTP Server

Version 2.4 Documentation, Apr. 2015.

[2] AUER, K. smb.conf Manual Page, 4.0 ed., Feb. 2015.

[3] BRATUS, S., LOCASTO, M. E., PATTERSON, M. L., SAS-
SAMAN, L., AND SHUBINA, A. Exploit programming: from
buffer overflows to weird machines and theory of computation.
In USENIX ;login: (2011).

[4] DAVENPORT, M. Asterisk Wiki. Digium, Inc.

11

[5] EASY SOFTWARE PRODUCTS. The CUPS Software Administra-
tors’ Manual, 1.1.21 ed., 2004.

[6] THE FREE SOFTWARE FOUNDATION. The GNU Make Manual,
0.73 ed., Sept. 2014.

[7] INTERNET SYSTEM CONSORTIUM. BIND 9 Administrator Ref-
erence Manual, 9.10.1 ed., Jan. 2015.

[8] NGINX, INC. NGINX Documentation, 1450 ed., Apr. 2015.

[9] PATTERSON, M. L. Cats and dogs living together: Langsec is
also about usability. In SEC-T (2014).

[10] SCHAFFRICK, K. private communication, 2013.

[11] UTIL-LINUX. fstab Manual Page, Aug. 2010.

Notes
1Macro languages might be procedural in design and allow the dec-

laration and use of mutable state, but this mutability does not escape
into the server—configurations written in macro languages, taken in
their entirety, are by definition referentially transparent. The inputs
may include data from the environment or filesystem, however this data
is assumed to be static for the duration of an individual execution.

2CUPS does have PostScript Printer Descriptions which contain
PostScript programs that are sent to printers, but these do not directly
alter the flow inside CUPS itself. From CUPS’s perspective, they are
magic strings it sends to hapless printers.

3Roland Illig has created a Towers of Hanoi solver in
!mod_rewrite!available at http://roland-illig.de/hanoi.

mod_rewrite.html

12

http://roland-illig.de/hanoi.mod_rewrite.html
http://roland-illig.de/hanoi.mod_rewrite.html

	Introduction
	Survey of Configurations
	Formats
	Default Propagation
	Macro Languages and Embedded Programming Languages

	Common Problems
	Terse versus Explicit – The Macro and Defaults Problem
	The Common Bridge Problem
	Composition
	Weird Machines

	Recommendations
	The Macro Solution
	The Failings of Traditional Programming Languages
	Current Configuration Languages

	Abstraction of the Common Bridge
	Composition
	Embedded Languages
	Conclusions

	Acknowledgments

